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ABSTRACT 

Hypometabolism of glucose in the brain is associated with the neurodegenerative 

disorder, Alzheimer’s disease (AD), warranting further study of the relationship between 

metabolic function and structural integrity of the brain. While demyelination is observed 

with AD, less is known about the impact of glucose levels in combination with genetic 

risk factors on myelination. Ketone bodies are the brain’s alternative fuel source during 

periods of low fuel such as in Alzheimer’s disease (AD). Demyelination of the brain may 

lead to accumulations of amyloid beta plaques, associated with the disease (Bartzokis et 

al., 2007). Individuals with a family history (FH) or the APOE4 allele have been seen to 

have a predisposition for developing AD. Therefore, in efforts to achieve neuroprotection 

for people at-risk for developing the disease or during the prognosis of the disease, serum 

ketone bodies and glucose levels were studied in relation to white matter integrity in the 

brain from the Alzheimer’s Disease Neuroimaging Initiative. Cholecystokinin (CCK) was 

also examined in the cerebral spinal fluid. CCK is a satiety hormone that is highly 

expressed in brain regions like the hippocampus. CCK is integral for maintaining or 

enhancing memory, and thus may be a useful marker of cognitive and neural integrity in 

participants with normal cognition, mild cognitive impairment (MCI), and Alzheimer’s 

disease (AD). Interactions were also tested with genetic risk factors for AD, family 

history (FH) and apolipoprotein E ε4 (APOE4) status. Participants with FH or APOE4 

allele showed increased myelin integrity as glucose levels increased when examining DTI 

fractional anisotropy in the fornix. Additionally, participants diagnosed with AD showed 

more demyelination compared to those who had mild cognitive impairment or who were 

cognitively normal as measured by DTI radial diffusivity in the fornix. Overall, the 
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ketone levels predicted improved myelin integrity. The individuals without genetic risk 

factors showed improved myelin integrity with increases in ketone bodies. Participants 

with MCI or AD displayed more demyelination with increases in ketones. However, over 

a period of 2 years, the increases in demyelination for APOE4 carriers, FH positive 

group, and MCI progressors all show decreased or no association with demyelination. 

Briefly, higher CCK was related to a decreased likelihood of having MCI or AD, better 

global and memory scores, and more GM volume primarily spanning parahippocampal 

gyrus. CSF CCK was also strongly related to higher CSF total tau and p-tau181. Tau 

levels partially mediated CCK and cognition associations. Participants with FH of AD or 

the APOE4 allele may show compensatory mechanisms by increasing glucose uptake to 

protect against degradation caused by the disease. When the disease progresses to full AD 

diagnosis, the damage may overcome the benefit from hypermetabolism of glucose and 

thus need to increase the metabolism of ketone bodies. CCK levels also reflect 

compensatory protection as AD pathology progresses. CCK is released as a response to 

the ingestion of dietary fats so an increase in ketone body may increase these effects of 

CCK. The white matter integrity of at-risk groups before symptoms of the disease appear 

should be studied as these individuals may be predisposed to less myelin integrity and as 

myelin in being broken down, ketones increase as a product of the demyelination. Over 

time the brain becomes more efficient at metabolizing ketones and with a greater pool, 

the demyelination slows. 
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CHAPTER 1.    GENERAL INTRODUCTION 

Brain utilization and metabolism is studied for many neurological diseases 

because the human brain weighs 2% of the body’s total weight, but consumes 25% of the 

body’s energy.   Alzheimer’s disease is the 6th leading cause of death in the United 

States, and out of the top 10 leading causes of death in the U.S., AD is the only one that 

we cannot treat, prevent, or even slow down. Alzheimer’s disease is a degenerative brain 

disease seen with a decline in memory, executive function, and atrophy of gray matter in 

the brain.  There are many genetic factors of the disease, but the cause is unknown.  This 

research  looks to see how nutrition  and brain utilization is involved in the pathogenesis 

of Alzheimer’s disease. 

 

Purpose of  Study 

 

The purpose of this research aims to examine nutritional biomarkers  that may 

predict the  onset and prognosis of Alzheimer’s disease. Studying a satiety hormone, 

released with the ingestion of fats and proteins, CCK, as well as studying glucose and 

ketone bodies in the  serum  in a large cohort of elderly participants highlights the 

important of diet and fuel sources in the brain.
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CHAPTER 2.    CHOLECYSTOKININ AND ALZHEIMER’S DISEASE: A 

BIOMARKER OF METABOLIC FUNCTION, NEURAL INTEGRITY, AND 

COGNITIVE PERFORMANCE 

Modified from a manuscript published in Neurobiology of Aging 

Authors: Alexandra Plagman, B.S.†, Siobhan Hoscheidt, Ph.D.†, Kelsey E. McLimans, M.S., 

Brandon Klinedinst, M.S., Colleen Pappas, Ph.D. , Vellareddy Anantharam, Ph.D., 

Anumantha Kanthasamy, Ph.D., Auriel A. Willette, Ph.D., M.S., for the Alzheimer’s Disease 

Neuroimaging Initiative  

Introduction 

Cholecystokinin (CCK) is a 33-amino acid satiety hormone secreted in the small 

intestines during digestion that binds to CCK-A receptors (CCKAR). CCK is secreted to 

allow the uptake of nutrients, most specifically fat uptake and metabolism of fatty acids 

(Pietrowsky et al. 1994). CCK is stimulated by fat and protein ingestion to signal the 

pancreas to release pancreatic enzymes into the duodenum, as well as to signal the secretion 

of bile salts from the gall bladder into the duodenum. A main function of CCK is to slow 

gastric emptying to allow time for proper digestion. Persons with AD have shown changes in 

their eating behavior, including both increased and decreased food intake, suggesting 

instability in weight regulation. People with AD also manifest changes in food variety 

preferences and their eating patterns (Morris, Hope and Fairburn 1989). Malnutrition is 

common and weight loss is seen in 40% of persons with AD  (Wallace et al. 1995). Dietary 

changes, due to food preferences of persons with AD, tend to contain a higher proportion of 

carbohydrates and a reduced intake of proteins (Greenwood et al. 2005). Hyperphagia is also 

found in a third of all individuals with AD (Morris et al. 1989). The reason for hyperphagia is 

unknown, but there may be a link to decreased satiety hormones or decreased sensitivity to 
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these hormones (Adebakin et al. 2012). In concert, a decline in body mass index (BMI) is 

associated with an increased risk of developing AD (Buchman et al. 2005). This change in 

body mass could be due to muscle wasting (i.e., sarcopenia) or a result of decreased food 

uptake. 

Interestingly, CCK receptors are found not only in the gut as CCK-A receptors, but 

also in the brain as CCK-B receptors (Pietrowsky et al. 1994). Figure 1.1 illustrated the 

function of CCK peripherally as well as centrally. CCK is also the most abundant 

neuropeptide in the brain and selectively binds to CCK-B receptors, or CCKBR (Pietrowsky 

et al. 1994). Indeed, CCK-B receptors are highly expressed in the hippocampus (Dockray et 

al. 1978) (Innis et al. 1979, Zarbin et al. 1983), a brain region integral in memory formation 

that is adversely affected early in Alzheimer’s disease, or AD (Braak, Braak and Bohl 1993). 

Hippocampal injection or cell culturing with CCK agonists or antagonists respectively 

improves or impairs long-term potentiation and memory in rodents by acting on CCKBR 

(Sebret et al. 1999, Wen et al. 2014). Memory impairment in aged rodents also corresponds 

to less CCK expression (Croll et al. 1999). Further, cerebral cortex has the highest 

concentration and CCK-specific binding in the brain (Saito et al. 1980), where endogenous 

CCK activity may produce long-term potentiation in medial prefrontal cortex akin to 

hippocampus (Liu and Kato 1996). Thus, it is important to observe if metabolic biomarkers 

related to body weight and dietary regulation dynamics are associated with neural, cognitive, 

and other behavioral outcomes relevant to AD.  
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Figure 2.1 Bi-directional CCK pathways in the periphery and brain. This diagram is 

displayed with permission from the original publisher. 

 

Despite a rich animal literature showing consistent enhancement or amelioration of 

memory by CCK-B activation, its role is virtually unknown in AD. AD-related changes in 

brain include progressive structural atrophy and decreased functional integrity (Klöppel et al. 

2018), leading to forgetfulness and progressively worsening memory loss (Azuma et al. 

2018). These changes occur in the presence of amyloid beta (Aβ) plaques and 

hyperphosphorylated tau (p-tau) tangles, as observed in brain tissue at autopsy or antemortem 

through cerebrospinal fluid (CSF). While CCK-B receptor binding does not differ in 

cognitively normal vs. AD persons (Löfberg et al. 1996), regional differences in post-mortem 

CCK concentration suggest an AD-like pattern of decreased expression (Mazurek and Beal 

1991).   
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Thus, we examined if levels of CSF CCK were associated with onset and severity 

across the AD spectrum, and determined if CCK was related to AD-like changes in 

cognition, neuroimaging, and classic AD biomarkers like Aβ and tau.  

Materials and Methods 

Participants 

Data from late middle-aged to aged adults, ages 55-90, were obtained from the ADNI 

database (http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of MCI and early AD. For up-to-date 

information, see http://www.adni-info.org. Written informed consent was obtained from all 

ADNI participants at their respective ADNI sites. The ADNI protocol was approved by site-

specific institutional review boards. All analyses used in this report only included baseline 

data, however measures were taken periodically for the database spanning a time of 90 

months. Baseline CSF data for CCK was available for 287 subjects: 86 CN, 135 MCI, and 66 

AD.  

Participants with MCI had the following diagnostic criteria: 1) memory complaint 

identified by the participant or their study partner; 2) abnormal memory as assessed by the 

Logical Memory II subscale from the Wechsler Memory Scale- Revised, with varying 

criteria based on years of education; 3) Mini-Mental State Exam (MMSE) score between 24 

and 30; 4) Clinical dementia rating of 0.5; 5) Deficits not severe enough for the participant to 

be diagnosed with Alzheimer’s disease by the physician on site at screening. Participants 

with AD met similar criteria. However, they were required to have an MMSE score between 

http://adni.loni.usc.edu/
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20 and 26, a clinical dementia rating of 0.5 or 1.0, and NINCDS/ADRDA criteria for 

probable AD. 

Mass Spectrometry and Fasting Glucose 

Data was downloaded from the Biomarkers Consortium CSF Proteomics MRM 

dataset. As described previously (Spellman et al. 2015), the ADNI Biomarkers Consortium 

Project investigated the extent to which selected peptides, measured with mass spectrometry, 

could discriminate among disease states. Briefly, Multiple Reaction Monitoring-MS 

(MRMMS) was used for targeted quantitation of 567 peptides representing 221 proteins in a 

single run (Caprion Proteome Inc., Montreal, QC, Canada). Analyses for this report focused 

on CCK levels, which were assayed in the CSF proteomics panel, for which the peptide 

AHLGALLAR was chosen because it performed better in most analyses (data not shown).  

Amyloid and Tau CSF Biomarkers 

CSF sample collection, processing, and quality control of p-tau-181, total tau, and Aβ1-42 are 

described in the ADNI1 protocol manual (http://adni.loni.usc.edu/) and (Shaw et al. 2011). 

Apolipoprotein E ε4 genotype 

         The ADNI Biomarker Core at the University of Pennsylvania conducted APOE 

genotyping. We characterized participants as being “non-APOE4” (i.e., zero APOE ε4 

alleles) or “APOE4” (i.e., one to two APOE ε4 alleles). 

Neuropsychological Assessment 

ADNI utilizes an extensive battery of assessments to examine cognitive functioning 

with particular emphasis on domains relevant to AD. A full description is available at 

http://www.adni-info.org/Scientists/CognitiveTesting.aspx. All subjects underwent clinical 

and neuropsychological assessment at the time of scan acquisition. Neuropsychological 

assessments included: The Clinical Dementia Rating sum of boxes (CDR-sob), Mini-Mental 
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Status Exam (MMSE), Auditory Verbal Learning Test (RAVLT), and AD Assessment 

Schedule - Cognition (ADAS-Cog). A composite memory score encompassing the RAVLT, 

ADAS-Cog, MMSE, and Logical Memory assessments was also utilized (Crane et al. 2012).  

Additionally, a composite executive function score comprising Category Fluency—animals, 

Category Fluency—vegetables, Trails A and B, Digit span backwards, WAIS-R Digit 

Symbol Substitution, Number Cancellation and 5 Clock Drawing items was used (Gibbons et 

al. 2012).  These composite scores were used in formal analyses to represent global memory 

and executive function among subjects. 

Magnetic Resonance Imaging (MRI) Acquisition and Pre-Processing 

T1-weighted MRI scans were acquired within 10-14 days of the screening visit 

following a back-to-back 3D magnetization prepared rapid gradient echo (MP-RAGE) 

scanning protocol described elsewhere (Jagust et al. 2010). Images were pre-processed using 

techniques previously described (Willette et al. 2013). Briefly, the SPM12 “New 

Segmentation” tool was used to extract modulated gray matter (GM) volume maps. Maps 

were smoothed with a 8mm Gaussian kernel and then used for voxel-wise analyses.  

18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) 

FDG-PET acquisition and preprocessing details have been described previously 

(Jagust et al. 2010). Briefly, 185 MBq of [18-153-F]-FDG was injected intravenously. After 

30 minutes, six 5-minute frames were acquired. Frames of each baseline image series were 

coregistered to the first frame and combined into dynamic image sets. Each set was averaged, 

reoriented to a standard 160 x 160 x 96 voxel spatial matrix of resliced 1.5 mm3 voxels, 

normalized for intensity, and smoothed with an 8 mm FWHM kernel. In order to derive the 

standardized uptake value ratio (SUVR), pixel intensity was normalized according to the 
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pons since it demonstrates preserved glucose metabolism in AD (Dowling et al. 2010). 

Normalization to the pons removed inter-individual tracer metabolism variability. The 

Montreal Neurological Institute (MNI) template space was used to spatially normalize 

images using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). A subset of 

subjects underwent FDG-PET scans and analyses included in this report. 

Statistical Analysis 

All analyses were conducted using SPSS 23 (IBM Corp., Armonk, NY) or SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Binomial logistic regression was used to 

assess the odds ratio of a given participant being diagnosed as AD versus MCI or CN 

reference group. Linear mixed regression tested the main effect of CSF CCK on 

neuropsychological performance, modulated GM maps, FDG maps, and CSF biomarkers 

including Aβ1-42, total tau, and p-tau-181. Covariates included age at baseline and sex in all 

models. Years of education was also covaried when analyzing memory and cognitive 

performance. For voxel-wise analysis, 2nd-level linear mixed models tested the main effect 

of CCK on regional GM volume and FDG, controlling for age, sex, education, and baseline 

diagnosis. Based on the literature, contrasts tested if higher CCK was related to more 

regional GM or FDG. Statistical thresholds were set at p < .005 (uncorrected) and p < .05 

(corrected) for voxels and clusters respectively. Results were considered significant at the 

cluster level. As described previously (Willette et al. 2015a), in order to reduce Type 1 error, 

we utilized a GM threshold of 0.2 to ensure that voxels with <20% likelihood of being GM 

were not analyzed. For GM, Monte Carlo simulations in ClusterSim 

(http://afni.nimh.nih.gov/afni/doc/manual/3dClustSim) were used to estimate that 462 

contiguous voxels were needed for such a cluster to occur at p < 0.05 family-wise error 

corrected. For FDG voxel-wise analyses, Monte Carlo simulations in ClusterSim were used 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/)
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to estimate that 224 contiguous voxels were needed for such a cluster to occur at p < 0.05 

family-wise error corrected.  

Results 

Data Summary 

Clinical, demographic, and CSF data for subjects with CSF CCK are presented in 

Table 1. Years of education, percent of APOE4 carriers, and age were not significantly 

different between participants diagnosed as CN, MCI or AD. As anticipated for this ADNI 

sub-population, cognitive function, observed utilizing global cognitive tests, was 

significantly different across CN, MCI, and AD groups (all p < 0.05). CSF CCK levels were 

significantly lower for persons with AD (p<.001) versus participants with MCI or AD. 

Table 2.1 Demographic Data for Subjects with CSF CCK 

  CN (N=86) MCI (N=135) AD (N=66) 
Age (years) 75.70 ± 5.54 74.69 ± 7.35 74.98 ± 7.57 
Education (years) 15.64 ± 2.97 16.00 ± 2.96 15.11 ± 2.96 
Sex (% Female) 48.8% 32.59% 43.9% 
APOE Status (% E4 carriers)  24.4% 52.6% 71.2% 
Cholecystokinin (ng/mL)  13.48  ± 0.56 13.47 ± 0.53 13.23  ± 0.56 
CSF Total Tau (pg/mL) 70.33 ± 27.64 102.99 ± 51.68 126.17 ± 60.69 
Ptau-181 (pg/mL) 24.12 ± 11.97 35.25 ± 15.13 41.95 ± 20.60 
Abeta 1-42 (pg/mL) 208.20 ± 56.05 161.21 ± 52.72 141.12 ± 37.39 
CDR-sob 0.02 ± 0.11 1.56 ± 0.88 4.34 ± 1.56 
MMSE 29.05 ± 1.02 26.91 ± 1.74 23.52 ± 1.85 
ADAS-COG11 6.05 ± 2.90 11.72 ± 4.33 18.88 ± 6.71 
Memory Factor (Z-score) 0.98 ± 0.50 -0.15 ± 0.57 -0.90 ± 0.55 

 

Values are mean ± SD. Chi-square analyses were conducted to examine differences between 

gender and APOE4 status.  The ADNI memory factor values are Z-scored with mean 0 and a 

standard deviation of 1, based on 810 ADNI subjects with baseline memory data (Crane et al. 
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2012). AD-Alzheimer’s disease; AD Assessment Schedule - Cognition (ADAS-Cog); 

Clinical Dementia Rating sum of boxes (CDR-sob); CN-cognitively normal; MCI-mild 

cognitive impairment; Mini-Mental Status Exam (MMSE).  

Clinical Characteristics and AD Risk 

Logistic regression was used to examine if higher CSF CCK expression predicted a 

decreased likelihood of being MCI or AD. The reference group was CN. The likelihood ratio 

statistic [Χ2=27.563, p<.001] indicated that higher CSF CCK levels predicted a lower Odds 

Ratio for being MCI or AD [Wald=13.437, β=-1.039, Exp(B)=0.354, p < 0.001]. These 

results suggest that a per ng/mL increase in CSF CCK corresponded to a roughly 65% less 

likelihood of being diagnosed with AD versus CN or MCI. Higher levels of CSF CCK were 

not related to increased risk when comparing CN vs. MCI, CN vs. AD, or MCI vs. AD 

individually. 

AD CSF Biomarkers  

To examine the relationship between CSF CCK and AD CSF biomarkers Aβ1-42, 

ptau-181, and total tau regression model analyses were performed with age, sex, BMI, 

baseline diagnosis, APOE4 status as covariates. A significant association with Aβ1-42 was not 

observed. However, as seen in Figure 1.2, higher levels of CSF CCK were significantly 

associated with higher levels of CSF total tau (SE = 37.8574.799, F=62.237, p< 0.001) 

and CSF ptau-181 (SE = 10.0461.630, F=37.992, p< 0.001). 
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Figure 2.2 Significant Associations between CSF CCK and CSF AD Biomarkers 

 

 

 

 

 

Global Cognition, Memory, and Executive Function 

As illustrated in Figure 1.3, regression models showed that higher CSF CCK was 

related to better global cognition scores for CDR-sob, ADAS-cog11, and MMSE. Similarly, 

higher CCK was associated with better memory factor and executive function factor 

(β±SE=0.156±0.077, p<.05) scores.  
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Figure 2.3 Cerebral Spinal Fluid Cholecystokinin and Cognitive Outcomes 

 

Preacher-Hayes Mediation of CCK and Cognition Outcomes 

We also explored if CSF AD biomarkers modified associations between CCK and 

cognitive outcomes. For CDR-sob, no CSF markers mediated associations with CCK.  

For ADAS-cog11 and CCK (direct effect β±SE= -3.110±0.585, p<.001), higher total 

tau acted as a partial mediator, reducing the influence of CCK by 24% (indirect effect 

β±SE=0.735±0.063, p<.05). For MMSE and CCK (direct effect β±SE=0.631±0.190, p<.001),  
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ptau-181 acted as a partial mediator, reducing the influence of CCK by 26% (indirect effect 

β±SE= -0.164±0.095, p<.05).  

For the memory factor and CCK, both total tau and p-tau181 acted as partial 

mediators. Specifically, as indicated in Figure 1.4, total tau reduced the influence of CCK on 

the memory factor by nearly half. In a separate model, p-tau181 reduced the influence of 

CCK on the memory factor (direct effect β±SE=0.186±0.064) by 36% (indirect effect 

β±SE=-0.067±.0263). Aβ1-42 was not a significant mediator for any cognitive measure. 

 Finally, for the executive function factor and CCK, both total tau and p-tau181 acted 

as partial mediators. Specifically, total tau reduced the influence of CCK on the memory 

factor (direct effect β±SE=0.355±0.087, p<.001) by 50% (indirect effect β±SE= -

0.178±0.041, p<.001). In a separate model, p-tau181 reduced the influence of CCK on the 

memory factor (direct effect β±SE=0.315±0.082, p<.001) by 47% (indirect effect β±SE= -

0.148±0.036, p<.001). 

Regional Gray Matter Volume 

To determine the relationship between CSF CCK and regional gray matter volume, a 

voxel-wise analysis was performed using SPM 12 among a subset of 303 participants. Higher 

CSF CCK was significantly associated with greater GM volume in a large cluster of voxels 

(k=11,962) primarily spanning cingulate cortex and parahippocampal gyrus, as well as 

thalamus, superior temporal sulcus, and medial prefrontal cortex (Figure 1.5 and 

Supplementary Table 1.1). 
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Figure 2.4 Preacher-Hayes mediation of CSF CCK, total tau, and a composite memory score 

at baseline. 

 

Regional 18F-Fluorodeoxyglucose Positron Emission Tomography  

Among 138 participants with FDG data, higher CSF CCK was not significantly 

associated with an increase in 18F-fluorodeoxyglucose Positron Emission Tomography 

(FDG PET) glucose uptake. 
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Figure 2.5 Higher CSF CCK and More Regional Gray Matter Volume 
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Discussion 

In this study, we hypothesized that CCK may serve as a useful metabolic biomarker 

for predicting AD outcomes, due to previous research looking at CCK-B and its role in 

maintaining or enhancing memory  (Liu and Kato 1996) (Sebret et al. 1999) (Wen et al. 

2014). We found that individuals with AD had modestly lower CCK than CN or MCI. Post-

mortem tissue analysis has been mixed, with some groups noting no change (Perry et al. 

1981) (Ferrier et al. 1983) or decreased expression (Mazurek and Beal 1991). Per ng/mL 

increase in CCK, there was a roughly 65% decrease in likelihood of being diagnosed with 

MCI or AD. Similarly, Higher CCK was associated with better performance in memory, 

executive function, and global cognitive tests, which via mediation was partly mitigated by 

levels of CSF tau species but not Aβ1-42. CCK has consistently been implicated as a 

protective or enhancing factor for memory formation. For example, in a rodent study that 

included CCK knockout mice (CCK-KO), the mice without CCK performed worse on the 

Morris water-maze test compared to wild type mice while evincing similar locomotion and 

food intake, indicating that CCK was a factor in learning and memory (Lo et al. 2008). CCK 

administration is directly able to induce or curb long-term potentiation (Sebret et al. 1999) 

(Wen et al. 2014), which is a well-established molecular process thought to underlie learning 

and memory.  

We further observed that higher CSF CCK levels were also correlated with more 

regional GM volume in areas such as parahippocampal gyrus, hippocampus, posterior 

cingulate cortex, and superior and medial prefrontal gyri. The parahippocampal gyrus is part 

of the limbic system, which plays a crucial role in memory and is affected in AD with 

atrophy in GM (Köhler et al. 1998). Atrophy in the hippocampus and posterior cingulate 

cortex strongly track disease progression and underlie memory decline (Pengas et al. 2010). 
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Medial prefrontal cortex is not only integral for memory retrieval, but also executive function 

as well (West 1996). These results suggest that as CCK levels increase, cognitive functions 

such as memory may improve due to the protection of GM in memory-intensive regions of 

the brain.  

CCK may exercise these effects by acting against the opiate system. Wen and 

colleagues found that CCK binding to CCK-B receptors contributed to opiate dependence, 

and that morphine withdrawal symptoms worsened after administration of a CCK receptor 

agonist (2014). The authors concluded that CCK works anti-parallel to the opiate system and 

accelerated opiate-dependence by inhibiting GABA receptors. Opiates have been shown to 

cause pathological memory formations, forming plasticity in neurons that have been shown 

to create addictions (Kauer and Malenka 2007). Thus, CCK works against the opiate system 

in attempts to regain functionality of brain regions especially in regards to memory formation 

and retrieval.  

In our study, we found no correlation between CSF CCK and A, however, strong 

relationships between higher CCK and higher tau levels were observed. While no existing 

work ties CCK to amyloid or tau to our knowledge, other studies have tested the relationship 

between AD markers and other satiety hormones. In a study conducted by Guo et al. (2016), 

A was added to PC12 cells to reaffirm the fact that A causes apoptosis due to cytotoxicity. 

However, when leptin, a satiety hormone released from adipose tissue, was added to the 

PC12 cells along with the A, significantly less cell death was observed. This protective 

phenomenon of leptin may be due to increased activation of JAK2, used in the regulation of 

the phosphorylation of the tau protein. When JAK2 was inhibited in the presence of A, 

there was an increase in phosphorylated tau regardless of whether leptin was present. 
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Similarly, with leptin administration, there was more JAK2 activation which caused 

decreased GSK-3 activation and less damage caused by the presence of A (Guo et al. 2016). 

GSK-3 is found in the brains of many persons with AD (Asuni et al. 2006) and is involved 

with the hyper phosphorylation of the tau protein. Thus, CCK may serve as a protectant 

against AD by suppressing expression of GSK-3 and increasing JAK2 activation. With 

increased CCK levels in individuals with more severe pathology, it may be possible that 

CCK is, acting in a similar way to leptin, trying to protect the brain from neuronal cell death. 

At a certain point, GSK-3 levels may increase such that the compensatory function of CCK is 

overridden, leading to an increase in accumulation and phosphorylation of tau. Indeed, total 

tau and ptau-181 levels partly mediate CCK and cognitive scores and strongly decrease such 

associations. 

Limitations of this study should be addressed. Using data from ADNI, we were 

unable to obtain dietary data, or other measures of body composition besides BMI. We were 

also unable to track changes in CCK over time as this was only measured at baseline. In 

conclusion, higher levels of CCK predicted better cognitive outcomes and more gray matter 

in memory-specific regions. Higher CCK was also related to more CSF total tau and ptau-

181. CCK may act as a protectant against AD by activated JAK2, and thus reducing the 

GSK-3 activation. We propose that as AD progression occurs, CCK levels increase in efforts 

to protect against further damage potentially induced by tau. Additional research would need 

to be done to further examine the relationship between CCK and tau over time. CCK levels 

may be a useful marker of cognitive and volumetric loss due in part to increased 

accumulation of tau, which may be useful for AD prognosis or a potential target to maintain 

memory in the face of AD pathology. 
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Supplementary Table 2.1 Associations between higher CCK and more gray matter 

Location  T value  X, Y, Z 
Cluster size 

(voxels)  

Mid Cingulum L 6.17 -9, -28, 38 11,962 

Mid Cingulum R 6.01 10, -27, 38   

Mid Cingulum L 5.95 "9, '"4, 38   

Parahippocampal Gyrus L 5.79 -33, -39, -3   

Pars Traingularis L 5.23 -36, 15, 26 9,501 

Superior Temporal Gyrus L 5.12 -54, -20,12   

Middle Frontal Gyrus L 4.53 -30, 45, 14   

Inferior Parietal Gyrus L 4.67 "46, "34, 38 463 

Postcentral Gyrus L 3.96 "45, "16, 33   

Middle Frontal Gyrus R 4.65 30, 42, 21 2022 

Superior Frontal Gyrus R 4.04 20, 44, 32   

Middle Frontal Gyrus R 3.98 30, 33, 30   

Superior Temporal Gyrus R 4.24 52, -24, 15 2873 

Superior Temporal Gyrus R 4.15 52, -36, 21   

Rolandic Operculum R 3.88 63, -18, 18   

Middle Temporal Gyrus R 3.68 56, -60, 18 1742 

Middle Occipital Gyrus R 3.39 51, -72, 26   

Superior Temporal Gyrus R 3.31 60, -56, 24   

Inferior Temporal Gyrus R 3.55 50, "45, "27 1766 

Middle Temporal Gyrus R 3.43 62, "52, "6   

Inferior Temporal Gyrus R 3.35 57, "54, "20   

Middle Temporal Gyrus L 3.54 -42, -62, 9 1003 

Middle Temporal Gyrus L 3.53  -52, -48, 2   

Middle Temporal Gyrus L 3.29  -51, -72, 22   

Inferior Temportal Gyrus L 3.45  -52, -56, -22 475 

Inferior Occipital Gyrus L 2.80  -50, -64, -18   
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Supplementary Table 2.2 Associations between higher CCK and less gray matter 

Location  T value  X, Y, Z 
Cluster size 

(voxels)  

Paracentral Lobule L 4.82 "10, "12, 76 3944 

Superior Motor Area R 3.68 4, "9, 72   

Superior Frontal Gyrus L 3.68 "14, 2, 75   

 

Supplementary Table 2.3 Associations between higher CCK and less glucose uptake 

Location  T value  X, Y, Z 
Cluster size 

(voxels)  

Mid Cingulate Gyrus R 5.69 6,2, 44 14,295 

Superior Motor Area R 5.03 6, "20, 52   

Paracentral Lobule L 4.67 "14,"14, 68   

Cerebellum R 3.86 14, "54, "16 1337 

Cerebellum L 3.78 "8, "64, "24   

Cerebellum R 2.98 10, "40, "14   

Rolandic Operculum L 3.77 "40, "22, 16 362 

Putamen L 3.18 "24, "6, 12   

Putamen L 3.13 "30, "2, 6   

Putamen R 3.18 28, 4, 12 274 

Insula R 3.08 34, "2, 10   

Putamen R 2.88 28, "10, 12   
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Supplementary Figure 2.1 Preacher Hayes Mediation Effect with stable_MCI and 

MCI_progressors 
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CHAPTER 3.    FASTING GLUCOMSE, GENETIC RISK FOR ALZHEIMER’S 

DISEASE AND NEURAL MYELINATION PATTERNS  

Modified from a manuscript to be submitted to Diabetes 

Authors: Alexandra K. Plagman, B.S.†, Colleen A. Pappas, Ph.D., Auriel A. Willette, 

Ph.D., M.S 

Introduction 

Normal aging and particularly Alzheimer’s disease (AD) are characterized by neural 

white matter demyelination and axonal degradation, which are strongly related to global 

decline as well as memory and executive function (Charlton et al. 2006, Bozoki et al. 2012, 

Charlton et al. 2010, Huang and Auchus 2007, Vernooij et al. 2009). Diffusion tensor 

imaging (DTI) can determine the myelin, axonal, and overall integrity of white matter tracts, 

depending on the proportion of perpendicular versus parallel or mean diffusion along tract 

fibers (Denis et al. 2001, Soares et al. 2013). Loss of tract integrity may be a very early 

marker of AD (Sperling et al. 2011) that precedes gray matter atrophy (Shim et al. 2017, 

Bailly et al. 2015), as well as progressive glucose hypometabolism such as with cingulum 

bundle and posterior cingulate cortex glucose uptake (Bozoki et al. 2012). Indeed, 

oligodendrocytes in at least rodents normally rely more on glycolysis-derived lactate for 

energy than aerobic respiration of glucose (Funfschilling et al. 2012, Tekkok et al. 2005, 

Morland et al. 2007). Consequently, mature oligodendrocytes are robust to low glucose 

levels in mutant mice with deficient mitochondrial respiration, due to increased glycolytic 

lactate production (Funfschilling et al. 2012).  
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 Conversely, hyperglycemia caused by metabolic dysfunction, such as pre- and type 2 

diabetes, can degrade white matter through increased neuroinflammation and oxidative stress 

(Marseglia et al. 2018). Pre-diabetes and type 2 diabetes in middle-aged and non-impaired 

aged adults is consistently related to less tract integrity in frontal, parietal, and temporal 

white matter(Hoogenboom et al. 2014, Reijmer et al. 2013b, Hsu et al. 2012, Yau et al. 

2009),(2014),(2017) (van Bloemendaal et al. 2016, Sun et al. 2018, Tan et al. 2019). In turn, these 

associations predict deficits in executive function, performance speed, and to a lesser extent 

acuity in memory(Reijmer et al. 2013a, Zhang et al. 2014, Xiong et al. 2016). Tracts have 

typically included superior longitudinal fasciculus, uncinate fasciculus, cingulum bundle 

proximal to cingulate gyrus or hippocampus, and corpus callosum. 

 It is of interest, then, that dysmetabolism contributes to AD risk, and that its pattern of 

white matter damage is similar to that of Mild Cognitive Impairment (MCI) due to AD and 

early AD (citation). Pre- and type 2 diabetes increase AD risk by roughly 1.7-3 fold (Cheng 

et al. 2012, Walker and Harrison 2015, Ott et al. 1999) and are related to poorer memory and 

executive function performance (Callisaya et al. 2018, Spauwen et al. 2013, Rawlings et al. 

2014). In animal models and humans, hyperglycemia appears to induce AD-like 

neuropathology such as amyloid-beta (Aβ) deposition, tau hyperphosphorylation, and 

regional hypometabolism in posteromedial areas related to memory storage and retrieval 

(Oskarsson et al. 2015, Bharadwaj et al. 2017). In genetically at-risk, asymptomatic middle-

aged adults, amyloid positivity (citation), AD parental family history, or Apolipoprotein E ε4 

(APOE4) carriage was related to variation in tract density within cingulum bundle proximal 

to cingulate gyrus and hippocampus, fornix, superior longitudinal fasciculus, corpus 

callosum, and superior corona radiata (Racine et al. 2014, Adluru et al. 2014). In aged adults, 
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Douaud et al. found similar associations comparing controls to AD (Douaud et al. 2011). Of 

interest was that amnestic MCI vs. cognitively unimpaired (CU) participants had less 

integrity in the superior corona radiata, with greater degradation in the corpus callosum and 

cingulum bundle specific to AD vs. MCI.  

 Comparatively few studies have used DTI to examine AD-related longitudinal white 

matter changes, if metabolic function is associated with these changes, and if stronger 

associations are seen in adults with AD genetic risk factors, MCI, or AD. Nowrangi et al. 

found subtle but significant tract density decreases across 4 visits spanning 1 year in 

hippocampal cingulum for MCI and AD participants and fornix for MCI compared to CU 

participants (Nowrangi et al. 2013). Other reports have noted less integrity in tracts such as 

uncinate fasciculus over 1.5 years in AD vs. CU participants (Kitamura et al. 2013). Utilizing 

Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2) data, as we do in this report, Mayo 

and colleagues (2017) found greater tract integrity loss. 

To date, research has focused on normal aging and pre- or type 2 diabetes when 

examining neural activity and tract integrity36. Qi et al. and Xiong et al. found that MCI 

subjects with vs. without diabetes had less uncinate fasciculus and cingulate bundle integrity 

(Qi et al. 2017, Xiong et al. 2019). Yet, it is unknown how dysmetabolism predicts 

longitudinal changes in white matter DTI measures across the AD spectrum, and to what 

degree these associations mediate cognitive decline.  

The current study tested the relationship between serum glucose levels and white 

matter integrity, cognition, and AD risk. We hypothesized that greater serum glucose would 

lead to a decrease in myelination integrity, decrease in cognitive performance, and increase 

the risk of developing AD. We also hypothesized that higher serum glucose in participants 
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with AD FH or APOE4 carriage, as well as MCI or AD, would be more strongly related to 

less integrity in frontal and temporal tracts that distinguish MCI and AD from CU aged 

adults. 

Research Design and Methods 

Participants 

All data were downloaded from the ADNI2 database (http://adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of MCI and early AD. Written informed consent was obtained from all ADNI participants at 

their respective ADNI sites. The ADNI protocol was approved by site-specific institutional 

review boards. For more information, please see www.adni-info.org. 

Participants with MCI had the following diagnostic criteria: 1) memory complaint 

identified by the participant or their study partner; 2) abnormal memory as assessed by the 

Logical Memory II subscale from the Wechsler Memory Scale- Revised, with varying 

criteria based on years of education; 3) Mini-Mental State Exam (MMSE) score between 24 

and 30; 4) Clinical dementia rating of 0.5; 5) Deficits not severe enough for the participant to 

be diagnosed with Alzheimer’s disease by the physician on site at screening. Participants 

with AD met similar criteria. However, they were required to have an MMSE score between 

20 and 26, a clinical dementia rating of 0.5 or 1.0, and NINCDS/ADRDA criteria for 

probable AD. 

In this study, among 191 participants (53 CU, 97 MCI, and 41 AD), the following 

data were downloaded: 1) basic demographics, clinical diagnosis at baseline, and MCI 

http://adni.loni.usc.edu/
http://www.adni-info.org/
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conversion to AD by 36 months; 2) baseline serum data for fasting glucose; 3) baseline AD 

CSF biomarkers for p-tau-181, total tau, and Aβ1-42; 4) DTI scans acquired at baseline and 6, 

12, 24, and 36 months; 5) global cognition indices, as well as memory and executive function 

factor scores; and 6) AD parental family history and APOE4 status. 

Fasting Glucose 

Serum glucose levels were assayed as part of a standard lab panel. Values were in 

ng/dL and log10 transformed to achieve a normal distribution.  

Amyloid and Tau CSF Biomarkers 

CSF sample collection, processing, and quality control of p-tau-181, total tau, and 

Aβ1-42 are described (Shaw et al. 2011).  

Brain Volumetry 

Transformational matrices were derived from T1-weighted MRI scans and applied to DTI 

scans to bring them into Montreal Neurological Institute (MNI) atlas space. The 3D 

magnetization prepared rapid gradient echo (MP-RAGE) scanning protocol is described 

elsewhere [22].  

DTI 

DTI is typically used to examine the microstructural integrity of white matter tracts, 

by examining how constrained (i.e., anisotropic) water movement is by myelin or axonal 

density. The most common DTI indices are mean diffusivity (MD) and fractional anisotropy 

(FA), as well as axial diffusivity or AxD (λ1) and radial diffusivity or RD ([λ2+λ3]/2) to 

respectively distinguish myelin vs. axonal damage. More MD, RD, or AxD reflect less 

microstructural integrity, whereas more FA reflects more microstructural integrity. DTI is 

quantitative in nature and is more sensitive to tissue damage than brain volume. To restrict 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851791/#R22
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type 1 error, 7 tracts were chosen a priori that have shown degradation in pre- or type 2 

diabetes and AD disease progression: cingulate gyrus cingulum, superior longitudinal 

fasciculus, uncinate fasciculus, fornix, parahippocampal cingulum, corpus callosum, and 

anterior corona radiata. 

As described, mean FA, AxD, and RD were derived from DTI tracts of interest using 

the Johns Hopkins white matter template(Xiong et al. 2016, Nir et al. 2013). Briefly, using 

FSL, raw diffusion-weighted volumes were aligned to the mean b0 image, motion and eddy 

current corrected, skull-stripped, and rigidly aligned to Montreal Neurological Institute MNI 

space via transformation matrices from rigid realignment of a given subject's T1-weighted 

volume image to an MNI template. At each voxel, a diffusion ellipsoid, or tensor, was 

calculated based on diffusion eigenvalues (λ1, λ2, λ3). Scalar anisotropic and diffusion maps 

were then created for FA using the standard equation: 

 

AxD was estimated using the primary eigenvector of diffusion parallel to the axon (i.e., λ1  

 

eigenvalue). RD was estimated by perpendicular eigenvectors using the standard equation:  

 

 
 

Due to the lack of specificity MD maps have for understanding microstructural pathology, 

and concerns about type 1 error, these maps were not utilized for analyses. 

AD Family History 

 AD parental history was defined as presence of maternal or paternal history, as 

described by the participant, informant, or both. 
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Apolipoprotein E ε4 genotype 

         The ADNI Biomarker Core at the University of Pennsylvania conducted APOE 

genotyping. We characterized participants as being “non-APOE4” (i.e., zero APOE ε4 

alleles) or “APOE4” (i.e., one to two APOE ε4 alleles). 

Neuropsychological Assessment 

ADNI utilizes an extensive battery of assessments to examine cognitive functioning 

with particular emphasis on domains relevant to AD. A full description is available 

at http://www.adni-info.org/Scientists/CognitiveTesting.aspx. All subjects underwent clinical 

and neuropsychological assessment at the time of scan acquisition. For this report, 

neuropsychological assessments considered included: The Clinical Dementia Rating sum of 

boxes (CDR-sob), Mini-Mental Status Exam (MMSE), and AD Assessment Schedule - 

Cognition (ADAS-Cog). Composite scores were used in formal analyses to represent global 

memory and executive function among subjects. The composite memory score encompassed 

the Rey Auditory Verbal Learning Test, ADAS-COG, MMSE, and Logical Memory 

assessments [20]. The composite executive function score comprising Category Fluency—

animals, Category Fluency—vegetables, Trails A and B, Digit span backwards, Digit Symbol 

Substitution, Number Cancellation and 5 Clock Drawing items was used [21].  

Statistical Analysis 

All analyses were conducted using SPSS 23 (IBM Corp., Armonk, NY). Linear 

mixed regression tested the main effect of serum glucose on neuropsychological test 

performance, white matter integrity using DTI scans, and CSF biomarkers including Aβ1-42, 

total tau, and p-tau-181. Covariates included age and sex in all models. Years of education 

was also covaried when analyzing memory, executive function, and global cognitive 

performance. Interactions were tested for FH of AD and APOE4 status. ANOVAs, Chi 

http://www.adni-info.org/Scientists/CognitiveTesting.aspx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851791/#R20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851791/#R21
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square, and AD risk analyses were completed to show significant differences across 

diagnosis groups. 

Results 

Data Summary 

Clinical, demographic, and CSF data for participants with serum glucose are 

presented in Table 2.1. Gender, serum glucose, and AD biomarkers Aβ1-42, ptau-181, and 

total tau did not show significant differences across diagnosis groups (ps>.05). Years of 

education and percent of APOE4 carriers were significantly different between diagnostic 

groups (ps<0.01). CN participants obtained more education more than AD participants 

(p<0.05), but those classified as MCI did not differ from either group. Age was also 

significantly different between participants diagnosed as CN, MCI or AD (p<0.05). 

Participants with AD were older than both their CN and MCI counterparts by about 3 years 

(ps< 0.05). As anticipated for this ADNI sub-population, cognitive function, observed 

utilizing global cognitive tests, was significantly different across CN, MCI, and AD groups 

(ps< 0.001).  

Clinical Characteristics and AD Risk 

Bivariate correlations were used to examine if higher serum glucose expression 

predicted an increased likelihood of converting from MCI to AD. The likelihood ratio 

statistic [Χ2=0.127, p<.01] indicated that higher serum glucose levels predicted a higher 

Odds Ratio for being a MCI progressor versus remaining stable. These results suggest that a 

per ng/dL increase in serum glucose corresponded to a roughly 37% greater likelihood of 

converting from MCI to AD compared to staying stable MCI [Wald=37.857, β=-0.553, 

Exp(B)=0.575, p < 0.001].  
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Table 3.1 Demographic Data for Subjects with Serum Glucose 

  CN (N=53) MCI (N=97) AD (N=41) 

Age (years)* 72.87 ± 5.79 72.99 ± 7.31 74.84 ± 8.65 

Education (years)** 16.40 ± 2.69 15.89 ± 2.72 15.24 ± 2.90 

Sex (% Female) 52.8% 35.1% 36.6% 

APOE Status (% E4 carriers)**  32.1% 54.6% 65.9% 

Serum Glucose (ng/dL) 2.00  ± 0.06 2.00 ± 0.10 2.00  ± 0.08 

CSF Total Tau (pg/mL) 77.24 ± 53.35 88.02 ± 55.85 84.89 ± 43.99 

Ptau-181 (pg/mL) 33.09 ± 17.08 36.69 ± 19.04 36.83 ± 20.99 

Abeta 1-42 (pg/mL) 191.59± 52.33 179.60 ± 52.89 190.00 ± 48.73 

MMSE*** 29.90 ± 1.32 27.93 ± 1.73 23.56 ± 1.76 

Executive Function (Z-score)*** 0.88 ± 0.73 0.22 ± 0.80 -0.86 ± 0.87 

Memory Factor (Z-score)*** 1.06 ± 0.61 0.21 ± 0.70 -0.95 ± 0.50 

    

 

Values are mean ± SD. Chi-square analyses were conducted to examine differences between 

gender and APOE4 status.  Serum glucose was log10 transformed to better achieve 

normality. The ADNI memory factor values are Z-scored with mean 0 and a standard 

deviation of 1, based on 810 ADNI subjects with baseline memory data (Crane et al. 2012). 

AD-Alzheimer’s disease; AD Assessment Schedule - Cognition (ADAS-Cog); Clinical 

Dementia Rating sum of boxes (CDR-sob); CN-cognitively normal; MCI-mild cognitive 

impairment; Mini-Mental Status Exam (MMSE). 

*, p<0.05; **, p<0.01; ***, p<0.001. 

 

White Matter Integrity 

 Linear mixed models were performed with age and sex as covariates to test the 

association between serum glucose levels and white matter integrity. Results of the 

significant main effects and  2-way interaction analyses are displayed in Supplementary 

Table 2.1. In general, significant main effects were observed with serum glucose in the 
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anterior corona radiata, cingulum near the cingulate gyrus, and superior longitudinal 

fasciculus (ps <.05). Main effects were also found in the cingulum near the hippocampus and 

the fornix (ps <.001). Interactions with at-risk groups were found significant in the cingulum 

near the hippocampus, fornix, superior longitudinal fasciculus, and the uncinate fasciculus 

for individuals with a FH, the fornix for APOE4 carriers, and the corpus callosum and fornix 

for MCI and AD persons. Additionally, FH, APOE4, and diagnosis interactions were 

examined across time and results of the 3-way interactions are presented in Supplementary 

Table 2.2. Three-way interactions between time, serum glucose, and risk factors were 

significant for the fornix, cingulum near the hippocampus, and superior longitudinal 

fasciculus (ps <.05). Supplementary Table 2.3 displays the association between DTI WM 

and cognitive functioning stratified for each at-risk group and each group by DTI interaction 

effects. 

Differences by FH and APOE4 status best predicted the relationship between serum 

glucose and FA of the fornix, in particular, thus these results are shown in Figure 2.1 and 

Figure 2.2 respectively. In Figure 2.1 relationships with family history are examined; 

participants with a family history of the disease displayed improved myelin integrity as 

glucose levels increase. Clinical diagnosis predicted the relationship between serum glucose 

and the RD of the fornix, as shown in Figure 2.2. For participants with AD, higher glucose 

levels were associated with more demyelination, while CN and MCI participants followed 

the opposite relationship.  
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Figure 3.1: Serum Glucose and DTI Fractional Anisotropy of Fornix by Family History 

 

 

Global Cognition, Memory, and Executive Function 

 Regression model analyses were performed with age, sex, and education level as 

covariates to test the serum glucose by white matter integrity interactions on cognitive 

function (MMSE, memory scores, and executive function). These analyses were also 

performed with FH, APOE4, and diagnosis to analyze the interaction of these three 

predictors of AD across time. The results from analyses are shown in Supplementary Table 

2.4.  Significant effects were observed between FH, APOE4, and diagnosis. There were no 

significant interactions for glucose and cognition. 
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Figure 3.2: Serum Glucose and DTI Axial Diffusivity in Corpus Callosum by Clinical 

Diagnosis 

 

 

AD CSF Biomarkers 

To examine the relationship between the interaction of serum glucose and white 

matter integrity and AD CSF biomarkers (Aβ1-42, ptau-181, and total tau), regression model 
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analyses were performed which individually examined diagnosis, APOE4 status, and FH as 

covariates. A significant association with Aβ1-42, ptau-181, or total tau was not observed. 

Discussion 

In this study, we hypothesized that with higher serum glucose levels, myelin integrity 

would decrease causing a decline in cognitive function. We also hypothesized that 

participants with a family history of AD and AD diagnosis, compared to MCI or CN, would 

show faster rates of demyelination with increased glucose levels. These hypotheses are based 

on previous research examining family history of AD, memory decline, and cortical thinning 

(Haussmann et al. 2018). Many studies have looked at the increased risk of developing AD 

when APOE4 allele is present; this allele has been correlated with increased levels of the tau 

protein (Jones and Rebeck 2018) and impaired insulin resistance (Zhao et al. 2017). Further, 

ApoE aids in the transport of cholesterol, including the reformation of cholesterol-rich 

myelin (Cantuti-Castelvetri et al. 2018, Westlye et al. 2012). The correlations between type II 

diabetes and AD connected with increased peripheral glucose levels and insulin resistance 

have also been shown (Wijesekara et al. 2018), leading this study to examine associations 

between serum glucose, white matter integrity, and factors such as FH of AD and APOE4. 

 One interesting finding of our study was the relationship between serum glucose and 

fornix myelin integrity specific to FH and diagnostic status. The fornix is a part of the brain 

that aids as the major output from the hippocampus, and thus has been shown to be important 

in memory formation, and maintaining cognitive function and memory in AD (Hescham et 

al. 2017). We found greater myelination in the fornix with increased glucose for participants 

with a FH of AD. There has been conflicting evidence for FH of AD regarding myelin 

integrity. One study found that individuals with a FH of AD showed increased FA (Adluru et 

al. 2014) whereas many other studies that have found the opposite effect, decreased FA(Pitel 
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et al. 2010, Di Paola et al. 2010). Metabolic dysfunction has also been associated with FH of 

AD. For instance, cognitively normal individuals with maternal FH have shown 

hypometabolism of glucose in the brain compared to age-matched controls (Mosconi et al. 

2007b). 

Although results with FH were not as hypothesized, we explain these findings as a 

compensatory mechanism used to fight the progression of the disease. Previous research has 

found that higher insulin resistance is related to more glucose uptake in the medial temporal 

lobe of MCI converters explained by a similar temporary compensatory trend (Willette et al. 

2015c). AD is characterized by hypometabolism of glucose in the brain (Mosconi et al. 

2007a). Therefore, individuals with a family history may show a premature or accelerated 

accumulation of either amyloid beta protein or tau protein deposition. This would explain the 

hypermetabolism of glucose; a mechanism used to delay onset or decrease damage caused by 

the pathology of the disease. Recent work suggesting that with increased amyloid beta 

deposition, there is increased glucose metabolism in CN individuals further substantiate our 

results (2016). When examining regions more metabolically active among healthy younger 

adults, Oh and colleagues (2016) found greater amyloid beta deposition in regions of interest 

with high metabolism for aged CN Aβ+ participants but not those classified as aged CN Aβ- 

or AD. However, there were no significant findings of CSF AD biomarkers such as tau, ptau, 

or Aβ with increased serum glucose. This could be explained by increased glucose 

compensating for greater deposition in the brain, and, in turn,  decreased CSF amyloid 

observed with AD progression A recent meta-analysis did not find differences between 

individuals with prediabetes and controls when examining CSF AB1-42, t-tau, and p-tau 
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levels, however, AD clinical characteristics may modify the observed relationship (Lu et al. 

2018). 

Both strengths and limitations of this study should be addressed.  Using data from 

ADNI, we were unable to obtain dietary data, or other measures of body composition besides 

BMI. Specific diets could not be used to study correlations. Further, serum glucose levels 

were only measured at one time point preventing the investigation of metabolic activity over 

time. However, we were able to test across the spectrum of AD.  We also examined the 

relationship between metabolism and markers related to LOAD such as genetic risk factors. 

By doing so, additional mechanisms tying metabolic dysfunction and cognitive impairment 

were able to be explored. The longitudinal design of the current study is another strength as 

changes in myelin integrity across time were able to be measured.  

In conclusion, we found that demyelination occurs more readily with increased 

glucose levels in participants with AD versus MCI or CN individuals. This result reinstates 

the idea that in CN and MCI individuals, glucose metabolism is normal, or in the case of 

pathology, predicted by family history status, hypermetabolism occurs to offset the 

progression of the disease. When AD is diagnosed, the damage has exceeded past the point 

where excess glucose metabolism is beneficially; here we see an increase in demyelination 

with increased glucose levels. With more knowledge on the pathology of the disease related 

to white matter, targeted treatments may postpone the age of onset and decrease severity of 

the disease.
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Supplementary Table 3.1 Effects for significant 2-way interactions with glucose 

 

p<0.05@, No Time Effect         p<0.05*    p<0.01**    p<0.-001***
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Supplementary Table 3.2 Effects for significant 3-way interactions with glucose 

 

p<0.05*    p<0.01**    p<0.-001***
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Supplementary Table 3.3 Association between DTI WM and cognitive functioning stratified 

for group and group*DTI Interaction effects 
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Supplementary Table 3.4 (continued) 

 

p<0.05*     p<0.01**      p<0.001*** 
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CHAPTER 4.    KETONE BODIES, GENETIC RISK FOR ALZHEIMER’S DISEASE 

AND NEURAL MYELINATION PATTERNS  

Modified from a manuscript to be submitted to Advances in Nutrition  

Authors: Alexandra K. Plagman, B.S.†, Colleen A. Pappas, Ph.D., Auriel A. Willette, 

Ph.D., M.S 

Introduction 

Ketone bodies are an alternative fuel source when the brain’s primary source of energy, 

glucose, is insufficient and result from catabolizing lipids. The brain utilitzes water-solute 

ketone bodies, such as acetoacetate and beta-hydroxybutyrate, during periods of fasting or 

starvation via ketosis or ketogenesis (Sokoloff 1973).Due to the anti-inflammatory properties 

of ketones, many diseases have been treated with a ketogenic diet such as epilepsy and 

dermatologic disease, (Fomin, McDaniel and Crane 2017, Elia et al. 2017) while other 

properties such as alternative fuel source have made ketones a possible treatments for cancer 

(Fokidis et al. 2015). Ketogenic diets, intermittent fasting, and other dietary methods that 

increase ketone bodies are implemented in individuals with cognitive decline to ameliorate 

some of the cognitive changes observed with aging and Alzheimer’s disease (Xin et al. 2018, 

Mattson et al. 2018). 

Throughout the normal aging process poorer performance in tasks related to memory, 

executive function, and reaction time are observed. When declines in memory and cognitive 

function surpass normal aging, individuals may be diagnosed with mild cognitive impairment 

(MCI) or Alzheimer’s disease (AD). MCI, preclinical diagnosis to AD, is characterized by 

decreased memory scores, executive function, and other cognitive functions, however, 

deficits are not severe enough for an AD diagnosis. Persons with MCI have more than one 

cognitive decline that affects their daily activities; a decrease in gray matter as well as 
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decreased myelin integrity is also observed (Kavroulakis et al. 2018, Knopman and Petersen 

2014). AD is a neurodegenerative disorder characterized by a decline in cognitive function, 

especially memory, atrophy of gray matter in memory specific regions, and decreased myelin 

integrity. Accumulation of a misfolded protein referred to as amyloid beta, tangles of tau 

protein, and phosphorylated tau are commonly found in the brains of persons with AD. 

There are numerous lifestyle and genetic factors that infer greater risk of developing 

AD, including family history (FH) and apolipoprotein E4 (APOE4) carriers. For example, 

FH positive individuals have cortical thinning which leads to an increased risk of developing 

the disease (Ganske et al. 2016, Haussmann et al. 2018). APOE4 has been linked to 

developing AD when either one or two alleles are present (Christensen and Pike 2018). 

Carriers of APOE4 show cognitive decline in addition to changes in brain metabolism such 

as decreased glucose uptake and utilization, which is in contrast to more efficient ketone 

body metabolism (Wu, Zhang and Zhao 2018).  

Decreased glucose uptake and metabolism is found in individuals with AD, which 

contributes to cognitive decline (Szablewski 2017). Insulin resistance, and in turn Type II 

Diabetes (T2D), are predictors of AD (Hao et al. 2015) and has been shown to cause 

hypometabolism of glucose in the brain (Willette et al. 2015b). Further, hypometabolism in 

various regions of the brain has been found among individuals with dementia using 18-F-

fluorodeoxyglucose (FDG) PET imaging  (Kato et al. 2016). To study the white matter 

integrity of the brain, the tracts in the brain that allow signals to be sent and nutrients to be 

transported between gray matter regions, an imaging technique called diffusion tensor 

imaging, DTI, is used. DTI has been shown to be a more sensitive technique than FDG-PET 

in measuring early signs of deterioration in individuals with MCI (Szablewski 2017). 
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Demyelination, or the breakdown of white matter, starts in the prefrontal areas of the 

brain and progresses posteriorly throughout the normal aging process (Bartzokis et al., 2003). 

White matter integrity has been shown to predict declines in memory that may lead to AD 

(Chapman et al. 2016). In order to study the myelination, or white matter tracts, in the brain 

DTI is used as a noninvasive way to visualize the microstructural composition by studying 

the movement of water molecules to map out the white matter tracts. During the progression 

of AD, areas of the brain such as the telencephalon, entorhinal cortex, hippocampus, and 

amygdala, have an increased risk of demyelination as these areas were myelinated later in 

life (Bender, Völkle and Raz 2016). According to Bartzokis et al., demyelination of these 

areas are associated with accumulation of amyloid beta proteins, or plaques, that suggests the 

demyelination process leads to deposition of the plaques (2007). While the relationship 

between AD and white matter integrity has been extensively studied, less is known about the 

relationship between ketone bodies and myelination across the AD spectrum.  

Acetoacetate and beta-hydroxybutyrate have been shown to enhance cognitive 

function while showing resistance to hormonal responses associated with hypoglycemia 

(Amiel et al. 1991, Veneman et al. 1994). Beta hydroxybutyrate, in particular, has been seen 

to protect neuronal integrity and prevent beta-amyloid accumulation (Kashiwaya et al. 2000). 

Triple transgenic AD mice had improved cognition and memory on various task-based tests, 

as well as decreases in amyloid beta deposition and phosphorylation of tau, after being fed a 

diet rich with ketone esters (Kashiwaya et al. 2013). These studies suggest a metabolic defect 

in the brain of individuals with AD. In individuals with a GLUT1 mutation, glucose cannot 

effectively be taken up in the brain, and leads to a delay in myelination. A ketogenic diet, 

consisting of fats and proteins, resulted in an increase in white matter in these peoples’ brains 
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(Klepper et al. 2007). Ketone uptake in the brain is not compromised by the pathology of AD 

like glucose is, thus ketones provide the brain with an alternate energy source when glucose 

cannot be utilized in AD (Cunnane et al. 2016, Castellano et al. 2015). 

Using data from the Alzheimer’s Disease Neuroimaging Initiative, we hypothesized 

that more ketone bodies would lead to greater myelin integrity, better cognitive performance, 

and lower risk of developing AD. However, we anticipated APOE4 carriers and individuals 

with a FH of AD to have decreased myelination due to previous research with other at-risk 

populations suggesting these trends (Willette et al. 2015c, Haier et al. 2003). With more 

knowledge about disease-related white matter integrity, targeted treatments may postpone the 

age of onset and decrease severity of the disease. 

Materials and Methods 

Participants 

Data from late middle-aged to aged adults were obtained from the ADNI database 

(http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, 

led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been 

to test whether serial magnetic resonance imaging (MRI), positron emission tomography 

(PET), other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of MCI and early AD. For up-to-date information, see 

http://www.adni-info.org. Written informed consent was obtained from all ADNI participants 

at their respective ADNI sites. The ADNI protocol was approved by site-specific institutional 

review boards. All analyses used in this report only included baseline data, however 

measures were taken periodically for the database spanning a time of 24 months. Baseline 

serum data for all three ketone bodies was available for 692 subjects: 175 CN, 386 MCI, and 

131 AD.  

http://adni.loni.usc.edu/
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Participants with MCI had the following diagnostic criteria: 1) memory complaint 

identified by the participant or their study partner; 2) abnormal memory as assessed by the 

Logical Memory II subscale from the Wechsler Memory Scale- Revised, with varying 

criteria based on years of education; 3) Mini-Mental State Exam (MMSE) score between 24 

and 30; 4) Clinical dementia rating of 0.5; 5) Deficits not severe enough for the participant to 

be diagnosed with Alzheimer’s disease by the physician on site at screening. Participants 

with AD met similar criteria. However, they were required to have an MMSE score between 

20 and 26, a clinical dementia rating of 0.5 or 1.0, and NINCDS/ADRDA criteria for 

probable AD. 

Mass Spectrometry and Ketone Bodies 

Data were downloaded from the ADNI Nightingale and DTI ROI dataset. Analyses 

for this report focused on serum ketone bodies, acetate, acetoacetate, and beta 

hydroxybutyrate, levels, which were assayed in the Nightingale dataset. 

Amyloid and Tau CSF Biomarkers 

CSF sample collection, processing, and quality control of p-tau-181, total tau, and 

Aβ1-42 are described in the ADNI1 protocol manual (http://adni.loni.usc.edu/) and (Shaw et 

al. 2011). 

Apolipoprotein E ε4 genotype 

         The ADNI Biomarker Core at the University of Pennsylvania conducted APOE 

genotyping. We characterized participants as being “non-APOE4” (i.e., zero APOE ε4 

alleles) or “APOE4” (i.e., one to two APOE ε4 alleles). 

Magnetic Resonance Imaging (MRI) Acquisition and Pre-Processing 

T1-weighted MRI scans were acquired within 10-14 days of the screening visit 

following a back-to-back 3D magnetization prepared rapid gradient echo (MP-RAGE) 
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scanning protocol described elsewhere (Jagust et al. 2010). Images were pre-processed using 

techniques previously described (Willette et al. 2013). Briefly, the SPM12 “New 

Segmentation” tool was used to extract modulated gray matter (GM) volume maps. Maps 

were smoothed with a 8mm Gaussian kernel and then used for voxel-wise analyses.  

Diffusion Tensor Imaging 

DTI preprocessing has been described 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792746/). Briefly, using FSL, raw 

diffusion-weighted volumes were aligned to the mean b0 image, motion and eddy current 

corrected, skull-stripped, and rigidly aligned to Montreal Neurological Institute (MNI) space 

via transformation matrices from rigid realignment of a given subject's T1-weighted volume 

image to an MNI template. At each voxel, a diffusion ellipsoid, or tensor, was calculated 

based on diffusion eigenvalues (λ1, λ2, λ3). Scalar anisotropic and diffusion maps were then 

created for Fractional Anisotropy, or FA, using the standard equation: 

 

Axial Diffusivity, or AxD, was estimated using the λ1 eigenvalue. Radial Diffusivity, or RD, 

was estimated using the standard equation:  

 

 
 

Due to concerns about type 1 error, Mean Diffusivity maps were not utilized for analyses. 

 

Statistical Analysis 

All analyses were conducted using SPSS 23 (IBM Corp., Armonk, NY). Linear 

mixed regression tested the main effect of serum ketone bodies on neuropsychological 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792746/
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performance, white matter integrity using DTI scans, and CSF biomarkers including Aβ1-42, 

total tau, and p-tau-181. Covariates included age and sex in all models. Years of education 

was also covaried when analyzing memory and cognitive performance.  

Results 

Data Summary 

Clinical, demographic, and CSF data for subjects with serum ketone bodies are 

presented in Table 1. Serum acetoacetate and serum 3-hydroxybutyrate levels, and AD 

biomarkers: Aβ1-42, ptau-181, and total tau did not show significant differences across 

diagnosis groups. Years of education and age were significantly different between groups: 

CN, MCI, and AD (p-value<0.01). Serum acetate levels and percent of APOE4 carriers and 

were significantly different between participants diagnosed as CN, MCI or AD (p-value 

<0.01 and p-value <0.001 respectively). As anticipated for this ADNI sub-population, 

cognitive function, observed utilizing global cognitive tests, was significantly different across 

CN, MCI, and AD groups (all p < 0.001).  
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Table 4.1 Demographic Data for Subjects with Serum Ketone Bodies 

                                              CN (N=175) MCI (N=386)        AD (N=131) 

 

Age (years)* 72.83 ± 5.85 72.76 ± 7.13 74.79 ± 8.62 

Education (years)* 16.41 ± 2.62 16.10 ± 2.70 15.52 ± 2.76 

Sex (% Female)** 50.0% 37.3% 35.5% 

APOE Status (% 

E4 carriers)*** 
32.4% 54.0% 70.2% 

Serum Acetate 

(mmol/l)** 
0.0368  ± 0.00846 0.0389 ± 0.00952 0.0408  ± 0.01542 

 Serum 

Acetoacetate 

(mmol/l) 

0.0392  ± 0.01663 0.0421  ± 0.02307 0.0424  ± 0.03603 

Serum 3-

hydroxybutyrate 

(mmol/l) 

0.1467  ± 0.08659 0.1580  ± 0.10549 0.1698  ± 0.20090 

CSF Total Tau 

(pg/mL) 
75.97 ± 45.87 81.21 ± 51.67 84.69 ± 59.80 

Ptau-181 (pg/mL) 33.16 ± 16.86 34.93 ± 18.83 35.92 ± 20.74 

Abeta 1-42 

(pg/mL) 
195.48± 48.86 185.85 ± 52.67 191.57± 54.17 

MMSE*** 28.88 ± 1.31 27.95 ± 1.70 23.58± 1.75 

Executive 

Function (Z-

score)*** 

0.87 ± 0.73 0.24 ± 0.80 -0.86 ± 0.88 

Memory Factor 

(Z-score)*** 
1.04 ± 0.59 0.22 ± 0.71 -0.96 ± 0.51 

 

   

 

 
 

Values are mean ± SD. Chi-square analyses were conducted to examine differences between 

gender and APOE4 status.  The ADNI memory factor values are Z-scored with mean 0 and a 

standard deviation of 1, based on 810 ADNI subjects with baseline memory data (Crane et al. 
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2012). *, p<0.05; **, p<0.01; ***, p<0.001. CN-cognitively normal; MCI-mild cognitive 

impairment. 

White Matter Integrity 

 Regression model analyses were performed with age and sex to show the association 

between ketone body levels and white matter integrity using DTI scans. These analyses were 

shown over time displayed in Supplementary Table 3.1. These analyses were performed 

with family history (FH), APOE4, and diagnosis to analyze the interaction of these three 

predictors of AD across time displayed in Supplementary Table 3.2. A summary of the 

results based on areas of the brain are displayed in Supplementary Table 3.3. 

 The main effect of acetoacetate levels on white mater integrity using fractional 

anisotropy. This type of DTI is on a scale 0 to 1 with a higher value indicating more myelin 

integrity. In the uncinate fasciculus we found that with an increase in acetoacetate, there was 

a correlation with increase myelin integrity show in Figure 1a. In the splenius of the corpus 

callosum, a DTI using radial diffusivity is used to show as acetoacetate levels increase, the 

amount of demyelination decreases shown in Figure 1b. 

 Figure 1c displays the at-risk groups; the individuals with a FH were examined in 

the cingulum around the cingulate gyrus where we found no correlation with myelin integrity 

as acetoacetate levels increased compared to the FH negative group where we saw a 

correlation with increased myelin integrity as the level of ketone body raised.  

Using AD, the uncinate fasciculus was examined the amount of axonal degeneration 

occurring as acetoacetate levels increased comparing another at risk group, the APOE4 

carriers. Shown in Figure 2a, as acetoacetate levels increased there was a correlation with an 

increase in the amount of axonal degeneration occurring in APOE4 carriers while no 

correlation was found with non-carriers.  
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This trend was seen using beta hydroxybutyrate in the tapetum using RD DTI. In 

Figure 2b, as beta hydroxybutyrate levels increased, there was an increase in the amount of 

demyelination in APOE4 carriers and no significant trend for non-carriers. 

Figure 3a depicts the levels of demyelination across the AD spectrum as acetoacetate 

levels increase shown in the tapetum using RD. For CN participants, as acetoacetate levels 

increased, the amount of myelin breakdown decreased; for MCI participants there was less of 

an association, but related to higher demyelination, and individuals with AD  were shown to 

have the highest amount of demyelination with increase ketone body levels.  

Figure 3b shows the demyelination of the cingulum around the hippocampus using 

RD. With increased levels of acetoacetate at baseline, there was an increase in the amount of 

demyelination in MCI progressors and no association with stable MCI. However, two years 

later, there is less demyelination occurring with an increase in acetoacetate in both groups. 
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Figure 4.1 Beneficial Effects of Ketone Bodies on White Matter Integrity. 
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Figure 4.2 Effects on White Matter Integrity with Increases in Ketone Bodies in APOE4 

Carriers. 
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Figure 4.3 Effect on White Matter Integrity with Increases in Ketone Bodies on MCI and AD 

Participants. 

 

Discussion 

 Hypometabolism in the brain is a distinct feature of Alzheimer’s disease (Brown et al. 

2014). For these individuals, the brain is starving due to a lack of glucose uptake in the brain. 

Ketone bodies, the brain’s alternative fuel source, were examined to determine their 
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availability and use throughout the AD process. For this study, we hypothesized that with an 

increase in ketone body levels, there would be less demyelination and improved cognition 

over time. APOE4 carriers and individuals with FH of the disease were hypothesized to show 

accelerated disease progression due to previous research(Ganske et al. 2016, Haussmann et 

al. 2018, Cannon-Albright et al. 2019). In this study, we predicted that these individuals 

would show an increased amount of demyelination despite increased ketone body levels. 

 We found, using several DTI measures, a correlation between increased levels of 

ketone bodies and increased myelin integrity. As myelin is composed of lipids and ketone 

bodies are the functional and useable part of lipids that are metabolized, we propose that as 

more ketone bodies are present, there is an increase in building blocks to synthesize more 

myelin. The formation of myelin is preferred to be derived from ketone bodies as opposed to 

glucose substrates (Koper, Lopes-Cardozo and Van Golde 1981). A ketogenic diet, which 

increase serum ketone bodies, was shown to promote myelination and decrease axon 

degeneration in individuals with myelin disease (Stumpf et al. 2019).  

 At-risk groups of developing AD were examined to look at predispositions that may 

lead to changes in white matter integrity. Participants with a FH of the disease showed no 

correlation with increased in ketone bodies and white mater integrity while participants 

without a FH of the disease had a correlation of increased white matter integrity. Participants 

with the APOE4 allele were found to have no correlation or increases in demyelination 

compared to non-carriers. Other research found that people with a family history or APOE4 

carriers have differences in the microstructure of the white matter before symptoms of the 

disease have started (Adluru et al. 2014, Bartzokis et al. 2007). White matter hyperintensities, 

or loss of white matter is found in CN individuals and is associated with risks of developing 
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AD (Salvadó et al. 2019). Reger and colleagues (year) found, with an ingestion of medium 

chain triglycerides to increase circulating ketone bodies, there was an improvement on 

memory scores for APOE4 non-carriers and a decline on memory scores for APOE4 carriers 

in memory-impaired participants. Even though the APOE4 carriers had greater increases in 

available ketone bodies, the ability to metabolize them was unfavorable (Reger et al. 2004). 

This may explain the reasons for increases in demyelination in these genetically at-risk 

groups. 

 Participants diagnosed with MCI or AD showed increases in demyelination as beta 

hydroxybutyrate levels increased while the opposite relationship was found among CN 

participants. The brain’s rate of uptake for ketone bodies remains unchanged throughout the 

progression of MCI and AD (Croteau et al. 2018), however, the ability of the brain to uptake 

ketone bodies has not been studied. Individuals with MCI and AD have increased 

demyelination which leads to increases in ketone bodies in the CSF. We believe people with 

MCI and AD have an impaired ability to uptake and metabolize ketone bodies, which leads 

to the increases in ketone concentrations in the serum. 

People at-risk for developing AD are predisposed to having poorer myelin integrity. 

Individuals with a FH of the disease, carriers of APOE4, and participants with MCI and AD 

show more demyelination; as ketone bodies increase, we see a detrimental effect of higher 

ketone bodies on white matter integrity initially. However, after two years, the correlation for 

these groups decreases or becomes non-existent. We predict, at the beginning, these at-risk 

individuals are breaking down myelin, which leads to the increase in ketone bodies in the 

CSF, but is eventually overcome by a protective effect of the increased ketone bodies 

concentration which slows the demyelination. Increases in ketone bodies for groups not at 
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risk for the disease show a neutral or increased effect on white matter integrity. Higher 

ketone bodies in healthy cognitively normal individuals is related to more white matter 

integrity which is supported by other researchers (Klosinski et al. 2015). 

 Further, MCI-progressors had more demyelination with increasing acetoacetate 

levels. We believe that as the brain is starving due to the hypometabolism of glucose, myelin 

is being broken down resulting in higher levels of ketone bodies in the CSF as well as more 

demyelination. As time goes on, the brain is protected by the increase in ketone bodies 

leading to decrease inflammation and decreased demyelination, explaining the loss of 

correlation after two years. 

Calorie restriction has also been shown to maintain and enhance white matter 

integrity (Guo, Bakshi and Lin 2015) which provides further evidence for our findings. 

Calorie restriction is a dietary protocol that reduces the number of calories, and has been 

shown to increase the amount of available ketone bodies by inducing ketosis in the body 

(Veech et al. 2017, Edwards, Copes and Bradshaw 2015, Shimazu et al. 2013). Calorie 

restriction has also been shown to protect against AD and other neurological diseases by 

decreasing neuronal cell death (Veech et al. 2001). 

There are several mechanisms that could explain our findings. Glucose is the main 

and preferred source of fuel for the brain. However, oligodendrocytes, cells that form new 

myelin, have been shown to survive in vivo by aerobic glycolysis with the use of a 

byproduct, lactate. Lactate can be metabolized in the white mater tracts when energy is 

deprived (Fünfschilling et al. 2012). As individuals with AD struggle to metabolize glucose 

in the brain, an excess of ketone bodies may lead to an improvement in cognitive function by 

providing the brain with a source of fuel such as lactate. 
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Limitations of the study should be addressed. The data used from the cohort, ADNI, 

did not record any dietary measures or body composition aside from BMI. We were able to 

study participants across the AD spectrum and had access to genetic risk factors. This study 

was longitudinal, so changes in myelin integrity could also be tested across time. Future 

research should examine whether dietary changes such as fasting, calorie restricting, or 

increases in dietary fat leads to increases in ketone bodies in both the serum and CSF; if such 

changes occur, it would be beneficial to measure inflammatory markers of oxidative stress 

and changes in white matter integrity. 

 In conclusion, we found at-risk groups of developing AD, such as an APOE4 

carriers, those with a FH of the disease, or being diagnosed with MCI or AD, had initially 

higher levels of demyelination associated with increases in ketone bodies. However, within 

two years, these association decreased or were non-significant. Thus, dietary changes, such 

as an increase in dietary fats or calorie restriction, during the progression of the disease 

would lead to an increase in ketone bodies in the CSF and protect against demyelination and 

slow the progression of the disease. If such dietary changes were implemented early in at-risk 

populations for AD, there is a greater chance of adaption the brain to utilizing ketone bodies 

and may reduce the effects of the disease.
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Supplementary Table 4.1 Significant Main Effects and 2-way interactions with at-risk groups for Acetoacetate 

 
p<0.05*   p<0.01**    p<0.001*** 
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Supplementary Table 4.2 Significant 3-way interactions with at-risk groups for Acetoacetate 

 
p<0.05*   p<0.01**    p<0.001*** 
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Supplementary Table 4.3 Significant Main Effects and 2-way interactions with at-risk groups for Beta-hydroxybutyrate 

 
p<0.05*   p<0.01**    p<0.001*** 
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Supplementary Table 4.4 Significant 3-way interactions with at-risk groups for Beta Hydroxybutyrate 

p<0.05*   p<0.01**    p<0.001***
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Supplementary Table 4.5 Summary of Results split by brain region 
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Supplementary Table 4.6 (continued) 
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Supplementary Table 4.7 (continued) 
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Supplementary Table 4.8 (continued) 
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Supplementary Table 4.9 (continued) 
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Supplementary Table 4.10 (continued) 
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Supplementary Table 4.11 (continued) 
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CHAPTER 5.    GENERAL CONCLUSION 

Alzheimer’s disease is a complex disease with genetic, environment, and lifestyle 

risks; this disease may also contain a metabolic component. With many similarities with type 

II diabetes, including insulin resistance and inflammation, the foods we are eating may affect 

the functionality and disease progression in our brains. Based on our research, due to 

hypometabolism of glucose in individuals with AD, increases in ketone bodies would 

increase energy availability for the brain to compensate for the glucose deficiencies 

especially in at-risk populations. We believe future research should look into dietary changes, 

such as an increase in dietary fat in efforts to increase CCK, where we should see improved 

cognition, increases in tau proteins, and increases in gray matter in memory-specific regions 

of the brain. With increases in dietary fat, there should also be increases in ketone bodies in 

the serum, which should improve myelin integrity and decrease the amount of demyelination 

over time. Another dietary intervention that should be studied is a decrease in dietary 

carbohydrates, where we expect to see increases in glucose. This increase in serum glucose 

should lead to more myelin integrity in individuals with a parental FH of AD, while those 

suffering with the disease should increase the amount of demyelination occurring compared 

to individuals with MCI and normal cognition. With both dietary changes, we expect to see a 

reduction in inflammation and oxidative stress as well as a reduction in the effects of the 

diseases by providing the brain with an alternative source of fuel early, especially in the 

individuals with genetic risks of developing AD.  
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